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We study a model of strongly correlated S=1/2 fermions on the planar pyrochlore, or checkerboard, lattice,
at fractional (1/8) filling. Starting with the extended Hubbard model in the limit of strong Coulomb repulsion,
low-energy configurations can be mapped onto hard-core dimer configurations whose dimers carry a spin
degree of freedom. An effective Hamiltonian similar to the kinetic term of a quantum dimer model on the
square lattice which rotates two parallel dimers (in a spin-singlet configuration) by 90° naturally emerges. We
also introduce an additional term in the Hamiltonian, a generalized dimer plaquette interaction, in order to
realize a closer analogy to the latter model. For a strong dimer plaquette attraction stabilizing a columnar
phase, a spontaneous dimerization takes place in the direction of the columns of (spin-carrying) dimers. Using
exact diagonalizations of two-dimensional periodic clusters, the analysis of the low-energy spectrum and of
several types of correlation functions gives indeed evidence for a new type of lattice symmetry breaking phase,
the eightfold degenerate mixed columnar-plaquette crystal, and for a transition from this phase to a resonating
singlet-pair crystal (found in previous studies) which restores the rotational symmetry of the lattice. Similar

conclusions and phase diagram are also reached from a simple variational approach.

DOI: 10.1103/PhysRevB.78.195101

I. MODEL, PURPOSES, AND METHOD
A. Introduction and summary of previous results

The interplay between electronic correlations and the lat-
tice geometry in quantum magnets can lead to a rich variety
of spin gapped disordered phases, either spin liquids with
fractionalized excitations or various types of valence-bond
crystals (VBC), which break spontaneously some of the lat-
tice symmetries. Among materials magnetically frustrated
and possibly presenting such phases, those with a pyrochlore
structure, a three-dimensional (3D) array of corner-sharing
tetrahedra, are of particular interest because of the absence of
magnetic order down to very low temperatures.! On a two-
dimensional (2D) version of the pyrochlore lattice, the
checkerboard lattice (see Fig. 1), the Heisenberg model pre-
sents a VBC of particular interest, the plaquette phase,’
which exhibits the rotational symmetry of the lattice. To un-
derstand the physics of undoped and doped frustrated mag-
nets and predict the occurrence of these phases in real mate-
rials, theoretical tools such as the Hubbard model, and
models derived from it in the limit of strong on-site repul-
sion, are commonly used in 2D (also in 3D) systems. These
exhibit very interesting properties: in a model of bosons on
the triangular lattice, doping away from commensurate fill-
ings drives a transition from an insulator to a supersolid
phase (with charge ordering and a finite superfluid density),?
which is also found in a model of bosons on the checker-
board lattice:* on the same lattice, spinless fermions near 1/4
filling present interesting properties such as fractional charge
excitations.>®

In a more specific context, to describe the nonmagnetic
resonating valence-bond phase of cuprate materials and the
transition of this phase to the superconducting phase, the
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quantum dimer model (QDM) was developed in the late
eighties,” mostly on two-dimensional lattices. This model
displays different types of valence-bond crystals (with close
analogies with their spin counterparts), among which the
quite exotic plaquette phases, and, depending on the lattice
(non-) bipartiteness, either a liquid phase with topological
order (on the triangular lattice®) or a quantum critical point
[Roksar-Kivelson (RK) point], both presenting deconfined
excitations.® The QDM is also connected to the physics of
pyrochlore systems, since strong Coulomb repulsion in the
(extended) Hubbard model on the kagomé or on the check-
erboard lattice, either for bosons or fermions at special frac-
tional fillings, select low-energy configurations that can be
mapped onto dimer or loop configurations.

The present study belongs to a series of works about the
extended Hubbard model on the 2D pyrochlore (or checker-
board) lattice, at and slightly away from fractional

FIG. 1. (Color online) Schematic representation of the Hubbard
model on the checkerboard lattice. In the limit || <V<U, this
model becomes equivalent to that described by the Hamiltonian Hg
[see Eq. (1.3)].
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fillings.>*~!! Here we focus on the effective model of §
=1/2 fermions at 1/8 filling (one particle for four sites) de-
rived from the extended Hubbard model,

H=-1t E ciacio+ UE ning + Vz nn;,
o i (i)

(1.1)

in the limit of large Coulomb repulsions U and V (with re-
spect to the energy scale given by the particle hopping am-
plitude 7). Let us briefly review our current understanding of
the physics of the extended Hubbard model on the pyro-
chlore lattice at the special fractional fillings n=k/4
(k=1,2,3)(Refs. 9 and 10) and mention the important re-
maining issues. For spinful fermions at these fillings, in the
limit where the on-site repulsion U is very large compared to
the nearest-neighbor repulsion V and hopping ¢, a metal-to-
insulator transition was found for increasing |V/1| at the fill-
ing factor n=1/4 (similarly as in the corresponding hard-
core bosonic model'!), and the corresponding insulating
phase (for |¢| < V< U) exhibits plaquette correlations indicat-
ing an ordering very different from a simple charge-density
wave. Whether the metal-to-insulator transition occurs im-
mediately at infinitesimal V or at a finite value depends on
the degree of the commensurability k. Indeed, the perfect
nesting property of the noninteracting Fermi surface realized
only for k=2 (and for a given sign of 7) leads to an instability
for arbitrarily small U and V.'? In the limit of interest here
(strong couplings), an effective model of S=1/2 fermions
was derived in the same study, involving a two-particle hop-
ping term (amplitude #,) and an additional term (amplitude
W) counting the number of singlet pairs on uncrossed
plaquettes. Varying the ratio of the amplitudes of these terms,
the system can be tuned from a charge-ordered columnar
phase [the internal structure of columns being that of Heisen-
berg antiferromagnetic (AF) chains] in the limit W<—|t,| to
a disordered RK point at W=t¢,. Note that, in this formula-
tion, the case W=0 is believed to provide the effective de-
scription of the insulating phase of the large-U, large-V Hub-
bard model on the checkerboard lattice mentioned above.
So far the case corresponding to filling n=1/2 is under-
stood the best. A phase transition was clearly evidenced at
finite (negative) W/t, between the charge-ordered phase and
a resonating singlet-pair crystal (RSPC) using an analysis
based on the symmetry-resolved low-energy spectrum and
plaquette correlations in the ground state (GS). The system at
n=3/4 was shown to exhibit also plaquette order by forming
a (lattice rotationally invariant) resonating singlet-pair crys-
tal, although with a quadrupling of the lattice unit cell (in-
stead of a doubling for n=1/2) and a fourfold degenerate
ground state. Concerning the n=1/4 case, the conclusions of
the previous study were less clear. Although the evolution of
plaquette correlations with W/¢, also supports a transition
from a charge-ordered to a RSPC, the analysis of low-energy
eigenstates was less conclusive than in the n=1/2 and
n=3/4 cases, primarily due to larger finite-size effects: in the
previous study computations were done on a N=32 checker-
board cluster with periodic boundary conditions (PBC).
Moreover for n=1/4, taking into account the possibility of
new mixed phases (which are not charge-localized but break
rotational symmetry) requires more caution in the analysis of
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the low-energy spectrum (and hence larger clusters). This
leads us to consider a new scenario for the phase diagram of
the model, which will be described in more detail hereafter.

B. Effective model

As outlined above, the effective model is derived from the
extended Hubbard model for S=1/2 fermionic particles on
the checkerboard lattice, in the limit of very large Coulomb
repulsion (more precisely |f|<V<U). In this limit, at 1/8
filling (n=1/4), one can exclude configurations where the
two neighboring sites are simultaneously occupied. In other
words, each tetrahedra should contain exactly one particle
(of either spin), an ice rule-type constraint, which still leaves
an exponentially large number of states. As discussed in the
literature, once the particles are viewed as dimers living on
the bonds of the square lattice formed by the centers of
crossed plaquettes, this constraint is equivalent to the hard-
core dimer constraint on the square lattice. However, in con-
trast to the “usual” QDM on the square lattice, here each
dimer carries a color index (associated to the spin of the
electron it represents).

In this limit, a single particle that hops out of a low-
energy configuration (colored dimer configuration) creates a
defect centered on a tetrahedra with an energy cost V. This
defect can however be annealed by the subsequent hopping
of the second particle on the “defect tetrahedron.” Such pro-
cesses lead to an effective kinetic term, i.e., a correlated two-
particle hopping, of amplitude 7,=2¢>/V. In terms of dimers,
this term looks like the kinetic term of the RK model, but
acts only on particles of opposite spin on the same uncrossed
plaquette (i.e., dimers of opposite color on the same
plaquette). The particles being fermionic, the expression of
the kinetic term involves operators of creation (destruction)
of singlets on wuncrossed plaquettes,

CHELCiC])
(cinej—cijcp),
+
HK =- tz E [(Cchjl - CLC]T) X (CkTCll - CkLClT) + C.C.],
(ijkl)
(1.2)

where the sum is on uncrossed plaquettes (going around a
plaquette (ijkl), sites are in the order i, k, j, ). A unitary
transformation, consisting in defining operators bif)=—cif on
every other ascending and every other descending line of the
checkerboard lattice oriented as in Fig. 1 (i.e., every other
vertical line of vertical links and every other horizontal line
of horizontal links of the associated square dimer lattice) and
bfzch? otherwise, allows that each two-particle hopping
term to have the same amplitude —¢, in terms of bf? opera-
tors,

HK: -1 2 [(b}b;l + bjlb}) X (kabll + bklblT) + C.C.].
(ijki)
(1.3)

Notice that this is valid only in the insulating phases at spe-
cific fractional fillings such as n=1/4, thanks to the ice rule-
type constraint. In addition, it is possible to label the sites of
the lattice in such a way that all exchange processes on the
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empty squares do not involve any reordering of the fermions
so that the bf? operators can be considered as bosonic. In
other words, our new formulation uses the bosonic represen-
tation of the spin singlets (we have checked the equivalence
numerically on the 32-site cluster).

Following the initial suggestion of Ref. 9 and according to
the discussion above, we also consider a term analogous to
the potential term of the QDM, although here it is no longer
diagonal in the basis of configurations,

Hy=W 2 [nn(1-n)(1-n)(1/2-2S;-8))
(ijkl)

+ (1 =n)(1=n))(1/2-28;-S))]. (1.4)
This terms “counts” the number of singlet pairs of next-
nearest neighbors (parallel dimers) in all uncrossed
plaquettes. The resulting Hamiltonian Hy+ Hy has a struc-
ture similar to that of the Roksar-Kivelson QDM, with both
terms flipping dimers and terms counting the flippable pairs
of dimers. Hy, can also be interpreted as a four-site ring-
exchange term on uncrossed plaquettes.'® It also presents a
RK point (here at W=t,), while for W/|t,|— - an ordering
in chains is favored; varying W/t, allows to make a continu-
ous connection between both these limits and the case W
=0, and to understand better the physics around this point.

C. Purpose of the study: phase diagram

Since 1, and W are the only energy scales in this model (at
zero temperature) we aim at determining the phase diagram
as a function of the ratio W/t, (or W, if we set #,=1). First,
we notice that for ,=W, the Hamiltonian has the same prop-
erty as in the quantum dimer model at the RK point: it can be
written as a sum of projectors (one per uncrossed plaquette).
At this point (the RK point of the #,—W model) the wave
function with an equal amplitude on all configurations (in
each sector of connected configurations) is annihilated by
each projector, and thus is a ground state with zero energy.
For W=t,, again for similar reasons as in the QDM, con-
figurations of minimal energy are those without any flippable
pair of spins, and these configurations are (degenerate)
ground states with zero energy. The center of interest of this
study is the case where W=t,, i.e., the region between the
RK point and the W=—-% point, where the ground state is
composed of decoupled Heisenberg chains (its energy is the
sum of the energy of these chains with an AF coupling
J=2|W| and a charge term L, W/2 where L, is the cumu-
lative length of the chains). Instead of considering W and t,,
one can define a reduced parameter @=arctan(W/z,) varying
continuously between the decoupled Heisenberg chains
(#=—m/2) and the RK point (6=m/4).

Between these points, the different phases one can expect
are (i) a columnar phase, ordered in chains, with rotational
symmetry breaking, translational symmetry breaking in one
direction (perpendicular to the chains) and thus a fourfold
degeneracy of the corresponding ground state; this phase is
encountered for #=—m/2, and could a priori extend over a
finite range of € in the vicinity of that point. Note that the
term columnar is used although this phase differs from the
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FIG. 2. (Color online) Possible scenarios for phase diagrams at
n=1/4 as a function of the ratio of parameters W/t,, depending
whether an infinitesimal #, coupling dimerizes AF chains from a
columnar order into a mixed columnar-plaquette crystal of type 1
(MCPC-1, up) or 2 (MCPC-2, down). The transitions indicated be-
tween either of these phases and a RSPC should be presumably of
first order in the first case and second order in the second case, but
one cannot exclude that the MCPC phase extends all the way to the
RK point.

columnar phase of the QDM on the square lattice, due to the
additional spin degrees of freedom; (ii) a RSPC or plaquette
phase, with the full rotational symmetry of the lattice but a
breaking of translational symmetry in both directions and a
fourfold degeneracy of the GS; (iii) mixed phases, with ro-
tational and translational (in both directions) symmetry
breaking (and a eightfold degenerate GS), corresponding to a
dimerization of the Heisenberg chains. A priori two types of
mixed phases appear naturally depending whether neighbor-
ing chains dimerize in phase, or in antiphase. Note that these
phases are a natural extension of the one recently discovered
in the context of the RK QDM.'? We shall refer to them as
mixed columnar-plaquette crystals (MCPC).

Knowing that #=—/2 corresponds to a columnar phase,
we refer in phase or in antiphase dimerization as MCPC-1
and MCPC-2, respectively, as shown schematically in Fig. 2.
These phases have distinct symmetries and the correspond-
ing ground states are characterized by different sets of (four
or eight) quantum numbers, which we define using the fol-
lowing conventions: the x and y axes of the lattice are par-
allel to the links of the square lattice (on which the dimers
live), and the unit length corresponds to one link of this
square lattice. To define point-group symmetries (those of the
C,, point group—or C,, or C, for certain wave vectors) we
set the center O of the lattice at the center of an uncrossed
plaquette. The quantum numbers of the degenerate GS of the
various phases are listed in Table I.

Given the symmetries of the candidate phases, one can
make a guess about the nature of phase transitions in the
model, for both scenarios described in Fig. 2. In the case of
a MCPC-2 phase for |t,|<-W, giving way to a RSPC close
to the RK point, the transition between those should be of
first order, since the symmetry groups of one phase is not
included in that of the other. By contrast, since the MCPC-1
phase distinguishes itself from the RSPC by the breaking of
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TABLE 1. Quantum numbers of the degenerate GS (in the ther-
modynamic limit) associated with the various phases expected in
the £,— W model at n=1/4 on the checkerboard lattice (for W=t,).
The X sign indicates that a wave function with the corresponding
quantum number belongs to the degenerate GS manifold for the
corresponding phase (0 otherwise). Irreducible representations la-
beled with ' are respective to subgroups C,, (A’1) and C, (A’,B’)
of the point group C4, when the wave vector considered is nonin-
variant under Cy,.

Phase — MCPC-1 MCPC-2 RSPC  Columnar
[A1,4=(0,0)] X X X X
[B1,9=(0,0)] X X 0 X
[Al,g=(m,m)] X 0 X 0
[A'1,g=(m,0)](1) X X X X
[B1,q=(m7,m)] X 0 0 0
[A"1,q=(7,0)](2) X 0 0 0
[B',q=(m/2,m)] 0 X 0 0

one of its symmetries (invariance by a /2 rotation), the
transition between those could be of second order.

D. Methods

In the present work, we first discuss the regime near
W/t,=— perturbatively (Sec. II). Next, we implement a
simple variational approach (discussed further in Sec. III)
adapted to describing the various candidate phases; in a sec-
ond step, we shall use Lanczos exact diagonalization tech-
niques to study the 7,—W model on clusters with periodic
boundary conditions in both directions. The sizes of the clus-
ters we consider in numerics are N=32,72 (7/4-tilted
checkerboard clusters corresponding to untilted square clus-
ters of lengths L=4,6), N=48 [/ 4-tilted checkerboard clus-
ter corresponding to an untilted rectangular cluster of dimen-
sions (L,,L,)=(4,6)], and N=64 (untilted checkerboard
cluster corresponding to a 7r/4-tilted square lattice of length
L=4\2). Except for N=72, the cluster periodicity is compat-
ible with all wave vectors q mentioned in the table above
[for the N=72 cluster, the wave vector q=(7/2, ) and those
equivalent to it up to point-group symmetries are unacces-
sible].

Note that we restrict ourselves to the sector S,=0 (which
includes all total spin sectors)—for convenience. In addition,
we consider only configurations for which the z components
of the total spin on each row (of vertical bonds) and each
column (of horizontal bonds) of the square lattice (which are
conserved quantities in the present model) are zero. This
condition is satisfied by the ground states corresponding to
any of the expected phases, and allows us to reduce the num-
ber of colorings of any dimer (=charge) configuration (hence
the total size of the Hilbert space). By using the character of
spin inversion, all point-group symmetries and translations
(in fact, due to the numerical technique for encoding con-
figurations, we use translations not interchanging the sublat-
tices of the dimer lattice, hence N/4 translations instead of
N/2) the number of representatives for N=64 and N=72
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clusters are close to 4.5 10* and 1.9 X 10°, respectively.'*

A powerful tool to determine the phase diagram is the
analysis of the lowest energy levels in symmetry sectors as-
sociated to each of the quantum numbers mentioned (and
with a character 1 for the spin inversion S;— —S?). For the
various phases one expects a degeneracy between the quan-
tum numbers marked by X in Table I, in the thermodynamic
limit (N— <0). On finite clusters, this degeneracy is lifted and
the lowest state is always found for [A1,q=(0,0)]—hence
we look at the lowest excited states. Ideally, an unambiguous
signal of spontaneous symmetry breaking is provided
by the collapse of the corresponding excitation energies
AE=E;—E([A1,(0,0)] with increasing N. However, the low-
energy spectrum on a large enough cluster (e.g., N=64) gives
enough information for a first analysis.

II. PERTURBATIVE APPROACH FROM W=-x:
COUPLING OF HEISENBERG CHAINS

Adding the potential term W to the Hamiltonian has sev-
eral benefits, among them the existence of two particularly
simple special points, namely the RK point, and the point at
W=-o. For the bosonic model, the latter yields the simple
columnar configurations as ground states. However, W=—x
does not always present such a simple setting. For the trian-
gular RK model, there are two families of ground states, each
comprising a number of members exponential in the linear
system size, the degeneracy between which is not lifted until
perturbations to leading nontrivial order in t,/W are taken
into account.?

The situation for our model is different still. Az W=—o0,
the ground state is obtained by maximizing the number of
plaquettes with a pair of dimers in a singlet configuration.
This leads to formation of a state breaking rotational and
translational symmetries—just like the columnar state—but
in which the spin correlations along the columns are critical.
Indeed, W=—o corresponds to decoupled Heisenberg chains.

The question appropriate to the setting of small [t/ W] is
thus what is the most relevant perturbation induced by the
kinetic term. This question has been addressed in—formally
related—contexts by Starykh and co-workers!®> and Essler
and co-workers.'® We closely follow the approach of the lat-
ter. Their observation that in the Heisenberg chain not only
the staggered spin but also the staggered energy correlations
are critical—both decay as 1/r—is central: the chains are
close to not only Neel but also to dimer ordering.

For our model, the coupling of the staggered dimerization
between neighboring chains is symmetry allowed, and hence
will generically appear as a perturbation is added. Indeed, it
is easy to see how this happens in our model. For finite
|,/ W|, flipping the dimers in two neighboring plaquettes in
adjacent rows yields an energy gain of O(W) for the
plaquette marked by a cross in Fig. 3, whereas there is no
such gain for the two plaquettes marked by circles. The cou-
pling between the chains is thus generated at O(|t,/ W|*), as
each plaquette needs to be flipped out of the chain and back.

As analyzed in Ref. 15, this coupling is relevant and it
will immediately lead to an in-phase dimerization of adjacent
chains. In our above classification, this corresponds to a
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FIG. 3. (Color online) Origin of dimerization in the limit of
large negative W (singlets flipped by Hy are represented by an
up-down spin pair): the plaquette marked by a cross gains an energy
W/2, while there is no such gain on plaquettes marked by circles.

MCPC-1 phase, which
W/ ty— —%,

Before we move on to variational (Sec. III) and numerical
(Secs. IV and V) investigations of the effective 7,— W model
on the checkerboard lattice, let us make some further re-
marks on the regime where W/t,<<—1. This will serve as a
warm-up exercise for identifying ground states by quantum
numbers. Let us consider a pair of Heisenberg chains of
length L (with periodic boundary conditions, the chain axis
being x), of spins-1/2 S, ; and S;,. The Hamiltonian

is thus present in the limit

H:JE Sia Sitiat KE (Si1-Sit1.)(Sin-Si2)

i,a

captures then coupling described above, although the true
effective coupling is more complicated; in particular, it in-
cludes similar four-spin terms along the chain favoring the
same dimerization pattern.

At K=0, the ground state is the product of ground states
of the Heisenberg model on each chain, and has a symmetry
(A,k,=0)— A (B) labeling even (odd) states with respect to
the chain interchange (Fig. 4). The first excited state in the
S§=0 sector corresponds to a 2-triplet excitation on one chain
(the other chain remaining in the GS). It is doubly degener-
ate, the quantum numbers of both states being (A, k=) and
(B,k,=). This state has (similarly to 1-triplet excitations)
an excitation energy proportional to 1/L, thus collapsing to
the ground state in the thermodynamic limit.

When a weak interchain coupling K is added, the degen-
eracy of this first excited state is lifted, with a splitting pro-
portional to K/J, as shown in Fig. 5. Since each of these
states has the symmetry of a dimerized state, with dimeriza-
tion either in phase [state (A,s)] or in antiphase [state
(B, )], the sign of this splitting is therefore associated with
the type of dimerization susceptible to spontaneously appear
in the system: for K/J=0, the (B, ) state has a lower en-

| K/

I
0

A AR

FIG. 4. Types of dimerization occurring in two Heisenberg
chains coupled by a four-spin coupling: in-phase dimerization
(K=0) or antiphase dimerization (K=0).
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(K (L) K/

FIG. 5. (Color online) Energies of the ground state and first
excited states of two periodic Heisenberg chains of L=10 spins 1/2
(Heisenberg coupling J) coupled with a four-spin interchain cou-
pling K. (K/J), indicates the crossing between the lowest triplet and
the (A,k,=) singlet. Notice also the degeneracy of (B,k,=m) and
(A,k,=0) states at the Majumdar-Ghosh point K/J=4/3.

ergy than the (A, 77) state and the system tends to dimerize in
antiphase; this is the opposite case for K/J=0.

Let us examine now the finite-size scaling of these exci-
tations in the presence of the four-spin coupling. The excita-
tion energy of the lowest excited singlet state [(A,r) for
K=0 and (B, ) for K=0] vanishes in the thermodynamic
limit (the convergence is as 1/L for K/J<<1), while the ex-
citation energy to the lowest triplet converges to a finite
value (spin gap) (see right plot in Fig. 6). Consequently,
while on a small enough system the triplet excitation has
lower energy than the lowest singlet, these levels cross as a
function of system size (at fixed K/J). This is illustrated (in

— T T T —— 1.5
L out-of-phase 7
dimerization "~ (a) (b)
0.5 Juiel 1 L [++K/J=-1 1
e | v K/J=-0.2
** K/J=0.2
0K - - K/J=1 11
N + (KAJ)
05k J}Sk X (K/J)+ ]
\4‘\»\
-1 in-phase Jk\ 4
| dimerization,
-1.5F B :
L 1 1 1 ‘\‘ 1 1 / 1 1 1
0 0.05 0.1 0.15 0.2 0250 005 0.1 0.5
/1. 1/L

FIG. 6. (a) (Color online) Position of the energy crossings be-
tween the lowest triplet and lowest (A, ) [(K/J)_] and (B,w)
[(K/J),] singlet states as a function of 1/L (L even up to 16); (b)
excitation energy AE of the lowest triplet for different values of
K/J versus 1/L. Dashed lines are only a guide for the eyes.
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a slightly different way) by the left plot in Fig. 6, showing
the positions of crossings (K/J),,_(L) between the lowest
triplet and either the lowest (A, ) or (B,) singlet, as a
function of system size. One can see that these values con-
verge to zero as L—oo. (Rigorously, one cannot be fully
conclusive with the present data set but a vanishing value as
L— o is expected from the reasoning above. Moreover we
checked that expressions of the type C/L+C'/L? fit the data
of (K/J),,_ better than any expression of the type
C+C’'/L*.) Therefore the lowest singlet excitation, of sym-
metry either (A, ) or (B,m) depending of the sign of K,
collapses onto the GS in the thermodynamic limit while a
spin gap survives above. This is the well-known scenario of
a spontaneous dimerization, which is precisely the type of
scenario one expects in our two-dimensional effective model
in the limit of weakly coupled chains (of colored dimers).
Here, it is important to note that there are distinct reasons for
the vanishing gaps. Even for W=—c, there will be finite-size
gaps of O(|W]), which vanishes algebraically due to the criti-
cality of the chains, while the other gap, parametrically small
in |t,/ W|, collapses due to the presence of symmetry break-
ing.

III. VARIATIONAL APPROACH DESCRIBING THE
CANDIDATE PHASES

A. Principle and trial wave functions

Before analyzing the exact ground state and lowest exci-
tations on finite systems, we estimate the energies of trial
wave functions associated with the different candidate
(RSPC, MCPC-1, and MCPC-2) phases in the range of pa-
rameters of interest (—7/2=<6=<m/4). A comparison be-
tween their variational energies provides information on their
relative stability. The trial wave functions we consider are
built as the tensor product on all equivalent plaquettes of an
identical wave function |1,//,,> defined on a single uncrossed
plaquette p, with a resonating singlet delocalized on the four
sites of the plaquette.

On this plaquette, [#,) is expanded over the four S,=0
configurations with two particles on the plaquette (and re-
specting the dimer constraint). If the four sites of the
plaquette are labeled from 1 to 4 clockwise around the
plaquette (starting from e.g., the site on the upper left side)
these four configurations are as follows: |u)=|1,0,]504) (0
denoting an empty site); |d)=]],0,1304); |r)=]0,1,05]4) and
[)=101150514). #,() is a linear combination of the two sin-
glet states (|u)+|d))/\2 and (|r)+|1))/2 (the plus sign re-
sults from the unitary transformation mentioned in Sec. I B):

d !
ly)(P) = cos(qﬁ)w + sin(qb)w'
V2 V2

The parameter ¢ can be restricted to values between 0 and
/4, thus describing mixed phases obtained by dimerization
of horizontally oriented Heisenberg chains. The global wave
function on a N-site cluster |‘I’O(¢))=®f\gf|¢pi(¢)> depends
on the angle ¢ and the set of N/8 chosen plaquettes p;, i.e.,
the type of dimerization described: either in phase (MCPC-1)

or in antiphase (MCPC-2). In the first case the RSPC corre-
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sponds to an angle ¢=1/4. The wave function | W) need not
be symmetrized with respect to space group symmetries, in
order to compute the expectation values of Hx and Hyy in the
thermodynamic limit: indeed, for two symmetry-related and
distinct vectors |W,) and |[V(), quantities such as
(W|HgwlWo) give a relative contribution O(1/N).

B. Trial function for MCPC-1 and RSPC phases

In order to describe the MCPC-1 phase and its stability
with respect to the RSPC, the trial wave function |‘I'(1)>(¢) is
used to compute expectation values of Hx and Hy. The only
terms of Hy contributing to (W|H|/W{) are plaquette flips
on occupied plaquettes, exchanging u/d configurations and
r/l ones. The average kinetic energy (per particle) is then

Hy () = 4NCU | H | Wg) = - 21, sin($)cos(4). (2.1)

For the nondiagonal part of Hy, (with S;'SJT terms), again only
terms for which both sites are in an occupied plaquette con-
tribute. But concerning the diagonal part of Hy, terms
1/2-28;S; with i, j on a void plaquette between two occu-
pied plaquettes also contribute, proportionally to either
cos(¢)* or sin(¢)* depending on the position of this void
plaquette. The expectation value of Hy (still per particle) is

Hy1(¢) = 4NCW | Hy | W) = W1 + sin(p)*/4 + cos(p)*/4].
(2.2)

The minimization of (Hy(¢))+(Hy(¢)) with respect to
¢ can lead to two distinct cases. For W/, =—4 a nontrivial
value ¢; of ¢ minimizing the expectation value of
H=Hyg+Hy is found, corresponding to a MCPC-1 state
breaking the r/2-rotational symmetry. ¢; is solution of
W/t,=—4/sin(¢,), and the corresponding average energy is

2
t
E\(¢) = 2v—; +5W/A.

For W/t,=-4 the minimization gives ¢;=m/4, which
means that the rotationally invariant RSPC is the most favor-
able state in this approach. The average energy of the RSPC
is estimated as

E1(7T/4) =—t2+9W/8.

The energies E;(m/4) and [for O=<arctan(-4)] E,(¢,) are
shown as a function of the parameter € in Fig. 7. Notice that
for §=arctan(—4), H,(m/4) corresponds to a local maximum
of the function H,(¢) and is shown only for comparison to
the (physically relevant) MCPC-1 variational energy E(¢,).

These results give also an indication of the nature of the
MCPC-1/RSPC transition: the expansion of the variational
energy functional Hy +Hy,(¢) in powers of x=¢—m/4,
for W/t, close to —4, is

H,(¢) = H (m/4) + 2(t + Wid)x> + (= 19W/24 — 21,/3)x*.

The sign of the coefficient of the x*> term changes for
W=—4t, while that of the x* term remains positive around
that point: in the frame of Landau’s theory of phase transi-
tions, this is characteristic of a second-order transition with
x as an order parameter, which varies continuously around
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FIG. 7. (Color online) Energies (per particle and in units of
\f’t§+ W?) of variational ground states describing the MCPC-1
[#=arctan(—4)], RSPC and MCPC-2 phases as a function of 6.
Exact ground-state energies for N=32, 48, 64, and 72 clusters are
shown for comparison.

the MCPC-1/RSPC transition and vanishes in the

7/ 2-rotationally invariant phase.

C. Trial function for the MCPC-2 phase

In this case, the trial wave function |\If(2)) is still param-
etrized by an angle ¢ between 0 and 7/4 and differs only
from the wave function describing the MCPC-1 phase by the
position of the occupied plaquettes. The angle /4 corre-
sponds here to a rotationally noninvariant pattern of rotation-
ally invariant occupied plaquettes (which differs from the
RSPC). Again, the structure of the trial state implies that the
contribution to the expectation values of Hy and the nondi-
agonal part of Hy comes only from terms acting indepen-
dently on occupied plaquettes. But here the diagonal part of
Hyy acts differently on the wave function than in the previous
case: it gives a nonzero expectation value only on the void
plaquettes situated between 2 occupied plaquettes to the right
and left (see Fig. 2). The corresponding term in (Hy,) is thus
proportional to the probability cos(¢)* for particles of both
plaquettes to be in |r) or |/} states. Eventually the expectation
value of H as a function of ¢ reads

Hy(p) = 4INCWG|Hy + Hi[W5) = W1 + cos(¢p)*/4]

— 21, cos(¢)sin(¢p) (2.3)

and is minimized, either for ¢,=m/4 when W=0, or when
W=0 for ¢, solution of

1 + tan(¢h,)?

Wit,=-4

T an(24)
The angle ¢, (for W=0), and consequently the correspond-
ing expectation value E,(¢,) of H, has no simple expression
as a function of W/t, or 6; a numerical resolution proves that
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RK(W=t2 )
(0=—m/2)
mixedl - !
V__’tplaquette RK

V=0

FIG. 8. (Color online) Variational phase diagrams for the model
of fermions (up) or bosons (down, with notations of Ref. 13). The
point of transition between a m/2-rotational invariant phase and a
phase breaking that symmetry is predicted at W=—t, (for fermions)
and V=~ (for bosons). For 0=W<=t, (resp. 0= V=r) the MCPC-2
or mixed-2 phase is the most competitive of our crystalline trial
wave functions, but it in turn loses out to the simple RK wave
function; see III E (green vertical lines).

for W=0 it is greater than H,(¢,) found with the wave func-
tion |\If(1)) (see Fig. 7)—this is not a surprise since the
(W/4)sin(¢)* term present in Eq. (2.2) is absent in Eq. (2.3).
In other words, this approach indicates that the MCPC-1 or
RSPC phase is stabilized with respect to the MCPC-2 phase
by interactions on some plaquettes, as soon as they are at-
tractive (W<0).

For W=0 the variational ground state |\I’(2,) corresponding
to an angle ¢,=m/4 has an energy 17W/16-1, lower than
that of the RSPC found before. Hence this can be considered
as the variational ground state in this approach, predicting a
domain of stability —47, < W <0 for the MCPC-1 phase (see
Fig. 8)—but one has to take into account the limitations of
this approach, discussed in III E.

D. Comparison to the bosonic case

In this paragraph we apply the previous variational
method to the bosonic case, i.e., to the QDM of Roksar and
Kivelson on the square lattice, to have a comparison between
the variational and exact phase diagrams. In this case, a
variational wave function |W)(¢) describing the plaquette
phase and the mixed phase (both described in Ref. 13, i.e.,
the bosonic analog of the MCPC-1 phase ; similarly a mixed
2 phase can be defined as the bosonic analog of the MCPC-2
phase) is defined, as previously, as a product of local wave
functions on plaquettes occupied in a plaquette pattern:

[W,) = cos(p)|v) + sin(¢h)|h)

(Jlv) and |h) correspond to either 2 vertical or 2 horizontal
dimers on the given plaquette). The energy per particle of the
state |¥)(¢p) is here (- and V being the amplitudes of the
kinetic and potential terms in the QDM, defined as in
Ref. 13):
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H () =— 2t sin(p)cos(¢p) + V[ 1 + cos*(¢p) + sin*()].

For V=—t this is minimized for ¢=/4 which corresponds
to a plaquette state, while for V=—t the angle ¢, is such that
V/t=—1/sin(2¢,). The corresponding energy per particle is

2

t
E =—+V (Vit=-1),
(@)= +V (Ir=-1)

E\(m/4)=3Vi4—12 (Vit=-1).

As in the fermionic case, one can define a variational wave
function parametrized by an angle ¢’ and corresponding to
the mixed 2 phase, and show that, after minimization with
respect to ¢’ it has a lower energy than E,(7/4); but again,
in that case the variational method is not adapted to the situ-
ation close to the RK point.

Consequently, the variational approach for bosons on the
checkerboard at n=1/4 predicts the existence of a mixed
phase for V=-¢ and a transition (second order again) to a
plaquette phase at V=—¢. In this approach the plaquette phase
extends from that point up to V=0, while the ground-state
energy in the domain 0 = V=t is better approximated with a
variational wave function of type mixed-2—this is essentially
due to the inadequacy of this method close to the RK point.
The variational phase diagrams for both the fermionic and
the bosonic model (both for an average occupation number
n=1/4) are shown in Fig. 8.

The larger extent of the RSPC phase in the fermionic
model than of the plaquette phase in the bosonic can be
attributed to the fact that, in the first case, a singlet resonat-
ing on a plaquette in a RSPC phase is less coupled to neigh-
boring occupied plaquettes: the process coupling neighbor-
ing plaquettes is subject to the constraint that interacting
particles have opposite spin, this constraint being absent in
the bosonic case. Consequently, for fermions the RSPC
phase is more stable and the transition to a MCPC phase with
longer range correlations occurs for a larger (negative) value
of W.

E. Reliability of the variational approach—comparison to
exact ground-state energies

Let us now comment briefly on the reliability of this
variational approach to give a qualitative, or even quantita-
tive, estimation of the phase diagram. For this, we have com-
pared the variational ground-state energies H,(¢;) and
H,(¢,) to the exact ground-state energies obtained on peri-
odic clusters of size N=32, 48, 64, and 72 (see Fig. 7). Since
the orientation and geometrical shape of these clusters differ
from each other, one cannot do an accurate finite-size scaling
of the exact ground-state energy that would allow for a pre-
cise comparison between exact and variational energies in
the thermodynamic limit. However, it appears clearly that
finite-size effects on the exact energies (per particle) de-
crease with N, which suggests that for a wide range of 6
(between —37/8 and 0) the exact and variational ground-
state energies differ from about 5% or less, and their varia-
tions with @ are very similar.!” The discrepancy between ex-
act and variational results is larger (i) when 6 gets close to
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/4: at the RK point, the ground-state energy on any cluster
considered is zero while the variational energy per spin is
t,/16 and corresponds to a MCPC-2 phase unexpected here:
the failure of the variational approach close to the RK point
originates in the inadequacy of the variational wave function
when the exact ground state is much more disordered (which
holds also in the bosonic case); there, the RK wave function
is a better trial wave function, with an energy per particle
Erx=W—t, [(V=1)/2 in the bosonic case].'® This RK trial
wave function has an energy lower than |‘I’%) for either
W/t,=0 or V/t=0 (see Fig. 8), defining a domain of stabil-
ity of a RK phase, which has to be interpreted more appro-
priately as a domain where the variational approach fails; (ii)
in the 7,—W model when 6 is close to —m/2, the failure of
this variational approach is expected since the exact ground
state consists of Heisenberg chains (weakly dimerized for
finite 7,), with spin-spin correlations along chains slowly de-
caying and the trial wave functions describing isolated reso-
nating plaquettes are no more valid there. For that reason, the
position of the MCPC-1/RSPC transition, predicted in this
approach at W/t,=—4 [hence 6=-1.326(1) relatively close
to —/2] can differ appreciably from the real position of this
transition. To determine the latter, one has to treat the model
exactly, taking all allowed configurations into account (and
not only those characteristic of the plaquette ordering) by
methods such as exact diagonalization.

IV. ANALYSIS OF THE LOW-ENERGY SPECTRUM
AND IDENTIFICATION OF PHASES

In the limit #,<|W| of the #,— W model, where the varia-
tional approach of Sec. III is least reliable, the kinetic term
Hy can be described as a perturbation, while the unperturbed
Hamiltonian Hy, has for ground state a product of Heisen-
berg chains. The effect of Hy can be described by an effec-
tive coupling K¢ W|t,/ W|*, associated with processes of or-
der 4 out of the Heisenberg ground state, where two singlets
belonging to two neighboring chains and opposite to each
other are flipped and then flipped back; the interaction result-
ing from this process is attractive due to the Hy term on the
interchain plaquette(s), making this process the most impor-
tant one in perturbation in 7,/W (among those having an
influence on the type of dimerization). Although we did not
determine analytically the sign of this effective coupling for
0<t,<|W|, by analyzing the energy splitting of the analogs
on the checkerboard of the (A, 7) and (B, ) excitations (of
the two-chain J— K model) we determine the sign of K, i.€.,
the type of dimerization occurring in the system.

A. Weak-coupling regime: low-energy spectrum
and quantum numbers

Let us consider first the #,=0 limit: here the low-energy
spectrum has a simple structure; i.e., lowest states are com-
posed of lowest states of Heisenberg chain of the corre-
sponding length (three chains of L=6 for the N=72 cluster,
two chains of L=4.k for the N=32.k cluster (k=1,2). The
ground state is found in sectors [A1,(0,0)], [B1,(0,0)],
[A’1,(7,0)], and [A’1,(0, )] (the fourfold degeneracy ac-

195101-8



MIXED COLUMNAR-PLAQUETTE CRYSTAL OF...

spin excitation: |-
(1+1) triplets

0.02 004

60 ALg=0, E,
»xx Al,g=0, E2
B1,q=(mt,m) E1 _

> =X Al,qZ(‘It,‘IE) El
A’1,q=(m,0) E3

*-x Bl ,q=0 E2 -
B’,q=(n/2,m) El
+—+ B’,q=(1/2,1) E,
\

I | N
t, /IWI 0.1 0.15

-20.9- charge excitation
| (spurious)

0 0.05

FIG. 9. (Color online) Energies of lowest excited states (in the
S=0 sector) of symmetries A1/B1,q=(0,0)/(m, ), [A’1,(m,0)],
[B',(m/2,m)], at t,<<|W|, for a cluster of N=64 sites. Inset: split-
ting between a 2-triplet [B, (/2 , )] state (plus symbol) and other
2-triplet states (X symbols).

counts for the four ways of regularly accommodating two
Heisenberg chains on the checkerboard cluster). At 1,=0, and
by extension in the weak-coupling regime |t,/ W|<1, the
first excited states are, either on the cluster N=64 (see Fig. 9)
or N=72: (i) a state in the S=1 sector (degenerate between
various quantum numbers) corresponding to a 1-triplet exci-
tation on one chain and the Heisenberg ground state of the
other(s) chain(s); (ii) a state in the sector S=0, with all quan-
tum numbers listed in Table I, corresponding to a charge
excitation breaking a Heisenberg chain into an isolated sin-
glet and an open (L—2) chain; (iii) a state in the sector S
=0 corresponding to 2-triplet excitation on the same Heisen-
berg chain, the other chains being in their ground states. On
the N=64 cluster this state is found with the quantum num-
bers [Al,(m,m)], [B1l,(m,m)], [A'1,(7,0)], [B',(7/2,m)]
(and those related by symmetry); (iv) slightly above the lat-
ter, a state in the sector S=0 corresponding to two I-triplet
excitations on distinct chains.

Although the lowest excitation in the S=0 sector is, on
clusters considered, the charge excitation, as far as these
states can be labeled as charge and 2-triplet excitations we
rather focus on 2-triplet excitations [states (iii) and (iv)],
since their excitation energy is a finite-size effect, being pro-
portional to |W|/L which vanishes in the thermodynamic
limit, while state (ii) has an excitation energy of order |W|
even for L—o0. Among 2-triplet excitations, state (iii) (2
triplets on the same chain) is of greater interest: not only
does it have a slightly lower energy than state (iv), but a
reasoning based on the model situation of two Heisenberg
chains coupled by a four-spin coupling term (see Sec. II)
shows that this state gives information about the type of
dimerization favored by the interchain coupling (or ¢, here).

To analyze the influence of a weak kinetic coupling
t,<|W| on the system and determine, in light of previously
discussed features of the J—K model of coupled Heisenberg
chains, we focus on states with 2-triplet excitations on the
same chain. The states corresponding to this excitation with
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different quantum numbers split when 7, increases; at lowest
order in t,/|W| the splitting occurs between the state in
[B’,(m/2,m7)] [2D analog of the (B, ) 2-triplet state in two
coupled Heisenberg chains, hereafter B state] and states with
other quantum numbers [analogs of the (A, ) 2-triplet exci-
tation for two coupled Heisenberg chains; hereafter A states].
In this splitting the B state (associated with a dimerization in
antiphase) has higher energy than the A states (associated
with a dimerization in phase); moreover, we have checked
that the energy difference between the B state and the A
states scales as W(t,/ W)*, as expected from the previously
discussed comparison with the J—K model of two Heisen-
berg chains (where the corresponding splitting occurs lin-
early in K/J). Hence we conclude that on the checkerboard,
for small but finite #,/|W| the Heisenberg chains dimerize in
phase and form a MCPC-1 phase, which is consistent with
results of Sec. III.

While in the limit of small 7,/ W the physics of the model
is quasi-1D, making finite-size effects very important on the
checkerboard clusters analyzed (especially at 7,=0, Heisen-
berg chains being critical), for larger couplings these finite-
size effects become less relevant, as soon as the clusters can
accommodate the various ordered phases. Hence in the latter
case and with the cluster sizes available, it is reasonable to
analyze the #,—W model nonperturbatively, and without
making reference to an effective model (such as that of
coupled Heisenberg chains).

B. Nonperturbative analysis for intermediate W/¢,: MCPC-1
or RSPC phase?

Away from the t,<|W| limit, one cannot simply identify
each of the first excitations as 2-triplet or charge excitations,
but by using symmetries of the model one can characterize
them by their quantum numbers. As seen in Sec. I C, for each
of the candidate phases, in the thermodynamic limit, we
know the quantum numbers associated with wave functions
of the (4- or 8-degenerate) ground state. Hence the relative
order (in energy) of first excitations with those quantum
numbers, for large enough systems, should be characteristic
of the symmetry of the ground state, and thus of the phase in
question. From Sec. IV A, the MCPC-1 phase is expected to
extend over a finite range of W/t,, going either to the RK
point or to a nontrivial point of transition toward a RSPC
phase (in analogy with the QDM on the square lattice). In

Fig. 10 we plot the lowest excitation energies (in units of

\Jt%+W2) corresponding to quantum numbers listed in

Table I, as a function of the parameter #=arctan(W/z,) (N.B.
This is equivalent to considering the Hamiltonian H
=sin(O)[Hy(W=1)]+cos(6)[Hk(t,=1)]).

The most striking feature of these graphs concerns the
states with quantum numbers [A1, (7, )] and [B1,(0,0)].

The excitation energy (in units of V75+W?) of the former,
being that of the charge excitation in the 6——/2 limit,
collapses when @ increases. In comparison, the [B1,(0,0)]
state, degenerate with the ground state at #,=0 (uncoupled
Heisenberg chains) becomes separated energetically from the
ground state when 7, becomes non-negligible (the vanishing
of both excitation energies when W/t, gets close to 1 is due
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FIG. 10. (Color online) Excitation energies AE=Ey;—Egs [E;
if labeled by (*)] in units of \J/t%+ W2 for different quantum num-
bers, in the singlet (Ref. 19) magnetic sector (open symbols) as a
function of #=arctan(W/t,), on the (a) N=64 and (b) N=72 check-
erboard clusters. The lowest triplet excitation is also shown (star
symbols).

to the degeneracy at the RK point). On the N=64 cluster, for
a wide range of 6, the Al, (7, ) state has an energy signifi-
cantly lower than the [B1,(0,0)] state and close to that of
lowest [A1,(0,0)] and [A’1,(r,0)] states (This is less obvi-
ous with data from the N=72 cluster, where the effective
length of chains L=6 results in stronger finite-size effects).
The eigenvalue crossing between [Al,(w,w)] and
[B1,(0,0)], similar to that observed for n=1/2, indicates a
breaking or restoration of rotational symmetry, signaling a
transition between the MCPC-1 phase (expected in the ther-
modynamic limit for ¢, <|W|) and the RSPC for which the
symmetrized wave functions of the ground state have quan-
tum numbers [A1,(0,0)], [A'1,(m,0)], [A'1,(0,)], and
[B1,(m,)]. As the data of the N=72 cluster are less clear,
the present analysis should be extended to larger clusters,
which is unrealistic with the current most advanced compu-
tational resources?® unless we find other tools to be more
conclusive about the existence and position of a MCPC-1/
RSPC phase transition.
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V. PLAQUETTE CORRELATIONS
ON THE CHECKERBOARD

Since the finite-size effects encountered for clusters of
sizes N =72, particularly in the weak-coupling regime and at
the supposed MCPC-1/RSPC transition, make it difficult to
identify clearly this transition by analyzing the low-energy
spectrum only, one needs complementary information about
the nature of the ground state. The ED numerical technique
employed in this study allows also to compute expectation
values of observables and their associated correlations. Con-
sidering the structure of the different ordered phases ex-
pected in this model (both the MCPC-1 phase and the RSPC
are composed of singlets localized on uncrossed plaquettes
of the checkerboard), it is preferable to consider an observ-
able defined on an uncrossed plaquette (and then symme-
trized) rather than on a single site. Hence in this section we
discuss results about two types of plaquette correlation func-
tions in the ground state of the 7,—W model, computed on
clusters N=32,64,72.

The first type of plaquette operators for which we com-
pute correlations have B1 point-group symmetry, and are re-
lated to the flippability of a given plaquette located at r (i.e.,
of an uncrossed plaquette of the checkerboard):

(3.1)

The correlations of P_ operators are computed from the
ground-state wave function |Ws) [first determined as the
ground state in the Al,q=(0,0) symmetry sector and then
expanded on all configurations]. The average value of P_ on
the ground state being zero by symmetry (for any plaquette),
the correlation function is defined as

P_(r) = (nyynyp — ”1,v”2,v)551,z+52,z'

C_(R) =ng . (Vgs|P_(0)P_(r)|¥gs),

where P_(0) is computed on a reference plaquette, P_(r) on
a plaquette at distance R from the reference one and ny, is the
number of plaquettes at distance R from the reference. A
nonzero value of C_(R) in the thermodynamic limit and at
large distances corresponds to a phase breaking the
ar/2-rotational symmetry (hence in this context to the
MCPC-1 phase).

In Fig. 11 are shown, for each of the cluster sizes consid-
ered, correlations C,(R=d,,,,) at the maximal distance be-
tween plaguettes equivalently occupied in a plaquette phase
(dmax=2V2 for N=32,72 and d,,,,=4 for N=64). We also
plot Fourier transforms S_ of C_ correlations, for wave vec-
tors q=(0,0) and q=(, 7). These Fourier transforms are
computed with a truncation at short distances; i.e., only cor-
relations for distances r=?2 are taken into account (distances
R=0,1 are discarded since the plaquette operators on neigh-
boring plaquettes share at least one site; at distance R=v2
the simultaneous double occupancy of both plaquettes is for-
bidden by the dimer constraint).

The correlations of the Bl plaquette operator (P_) vary
significantly with @ between the Heisenberg and the RK lim-
its, and give important information about the evolution of the
ground state. Correlations of P_ decrease strongly for
0=-37/8 (which means W/t,<W,~-2.4), both at the
largest distance d,,,, between equivalent plaquettes, and in
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FIG. 11. (Color online) Correlations in real space (C_) at dis-
tance d,,,, (dashed and dotted curves), and in reciprocal space (S_)
at =0 (square symbols) of B1 plaquette operators, on clusters of
size (a) N=32, (b) N=64, and (c) N=72, as a function of 6
=arctan(W/t,). On graph (b) are also shown, for the N=64 cluster,
plaquette-exchange correlations Cy, at distance dy,y and the corre-
sponding structure factor Sy at q=(,0) and q=(m, ).

Fourier space at wave vector q=(0,0)—in the weak-
coupling regime [for 6= 6.~-1.2(1)] S_[q=(0,0)] is well
approximated by a Gaussian function of 6+ m/2; for 6= 6,,
the ratio S_(6)/S_(—7/2) becomes smaller when d,,,, in-
creases, so one can expect Bl plaquette correlations to van-
ish in the thermodynamic limit. This indicates that the rota-
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tional symmetry of the lattice, broken in the weak-coupling
regime, is restored for 6= 6., which is a signature of a tran-
sition to a RSPC phase.

We also computed (off-diagonal) plaquette-exchange cor-
relations, i.e., correlations of the kinetic operator

Po(r) = (b):b], + bl b1 (byiby + by byy) + c.c.

(where sites i, j, k, [ are those around the void plaquette
at position r). The connected correlations Cpy(r)
=(P(r)P(0))={P5(0))* are vanishing in the §— —m/2
limit, where charge moves away from Heisenberg chains are
energetically forbidden; on the contrary, in a RSPC, they are
expected to be important between resonating plaquettes [at
relative position (2p,2¢g)—p, g €7 from each other] and
significantly smaller otherwise. Consequently we focus spe-
cifically on plaquette-exchange structure factors S,(q)
(Fourier transforms of the corresponding correlations) at q
=(m,0), q=(0,7), and q=(m, 7). They are shown for the
N=064 cluster, along with the correlation in real space at
maximal distance Cy(dpnay), in Fig. 11 [graph (b)].

These correlations increase significantly with 6 in the
weak-coupling regime, indicating the appearance of resonat-
ing plaquettes characterizing the MCPC-1 and RSPC phases.
We have checked (not shown) that the (7r,0) structure factor
is very well approximated by its contribution from correla-
tions between resonating plaquettes only, which indicates
that the picture of a plaquette pattern describes well the
ground-state wave function at 6= 6,, where these correla-
tions are important. The smaller value of the structure factor
at q=(m,7) compared to that at q=(77,0) originates from
non-negligible correlations at short distances such as d= V5.
The comparison between the correlation C(dy,y) rescaled
by a factor N/8—1 (accounting for the number of plaquettes
included in the Fourier sum defining S, and that should be
occupied and resonating in a MCPC-1 or RSPC phase, and
the structure factor S (7,0) itself, is eloquent: it indicates
that for 6= 6., almost all contributions to the Fourier trans-
form come from resonating plaquettes, and the correlations
between these plaquettes are long ranged. For larger values
of 6 (=6,) the (negative) contributions from other plaquettes
become non-negligible; but structure factors at both wave
vectors remain significant, and indicate the robustness of the
ordering on these plaquettes. Although plaquette-exchange
correlations alone are not sufficient to distinguish the RSPC
from the MCPC-1 phase, their change in behavior around
0= 6., associated with features of the low-energy spectrum
and B1 (diagonal) plaquette correlations, indicates the pres-
ence of a MCPC-1/RSPC phase transition (Fig. 12).

VI. CONCLUSION AND PERSPECTIVES

In summary, we have considered S=1/2 fermions on the
checkerboard lattice, with an extended Hubbard model in a
limit of infinite on-site and strong nearest-neighbor Coulomb
repulsions, at the specific fractional 1/8 filling. In this limit,
constraints characteristic of the square lattice dimer model
naturally emerge, with the links on the square lattice corre-
sponding to the sites of the checkerboard. Moreover, the
lowest-order kinetic process allowed in perturbation (from
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6=n/4:RK

0=—m/2
1D chains

FIG. 12. (Color online) Phase diagram of the ,— W model of
S=1/2 fermions at n=1/4 [in the range of parameter —7/2=60
= /4 where #=-arctan(W/t,)]. The MCPC-1/RSPC transition oc-
curs at 6.~-37/8*£0.2 according to exact diagonalization results
[a value 6,=arctan(—4) is estimated variationally].

the infinite repulsion limit) flips two particles around an un-
crossed plaquette, recalling the kinetic term of the quantum
dimer model, and the analogy is reinforced by considering an
extra term similar to the potential term of the QDM. How-
ever, here the spin degrees of freedom of particles play an
essential role, since kinetic processes act only on singlet
states on a plaquette. The model we have considered makes a
continuous connection between the physics of critical
Heisenberg chains (occurring in place of the columnar limit
of the QDM) and a RK-type critical point of the present
model.

Starting from a situation where the Heisenberg chains of
the first case are weakly coupled, we have identified the lead-
ing order—in perturbation in ¢,/ W—term coupling neighbor-
ing chains, and characterized it as a relevant perturbation for
the Heisenberg chains, driving their in-phase dimerization in
the thermodynamic limit as soon as the coupling is finite.
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The corresponding phase (mixed columnar-plaquette
crystal-1) distinguishes itself from other candidate phases
(RSPC and columnar) of the model by a lower symmetry,
and its extent in parameter space is determined by a detailed
analysis of the low-energy spectrum obtained by exact diago-
nalization, taking lattice and time reversal symmetries into
account. This analysis indicates that, when going toward the
RK-type point, the MCPC-1 phase persists up to a transition
into a 7r/2-rotational invariant resonating singlet-pair crys-
tal, the analog of the plaquette phase of the square lattice
QDM; this transition is confirmed by the computation of
various types of correlations between uncrossed plaquettes of
the checkerboard, characterizing the plaquette ordering, and
the symmetries of the ground state. The qualitative features
of this phase diagram are also found by a variational ap-
proach, also indicating that the transition between the
MCPC-1 phase and RSPC should be of second order. In
particular, the system described by the extended-Hubbard
model with strong repulsions considered first appears to be in
a resonating singlet-pair crystal, similarly to the correspond-
ing model at quarter filling.’

An open question is to know what happens at small but
finite doping from the 1/8 filled case: a possibility is that the
system remains in a crystalline phase confining the doping
particles (either holes or electrons depending on the type of
doping); alternatively, the RSPC could give way to a phase
with either deconfined doping particles or the formation of
bound Cooper pairs (as it happens in systems at small doping
from 1/4 filling and 1/2 filling?!) that would be an indication
of a superconducting or supersolid phase.
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